Reprint Series 24 April 1987, Volume 236, pp. 442–445 ## The α Subunit of the GTP Binding Protein G_k Opens Atrial Potassium Channels Juan Codina, Atsuko Yatani, Dagoberto Grenet, Arthur M. Brown, and Lutz Birnbaumer ## The α Subunit of the GTP Binding Protein G_k Opens Atrial Potassium Channels Juan Codina, Atsuko Yatani, Dagoberto Grenet, Arthur M. Brown, Lutz Birnbaumer Guanine nucleotide binding (G) proteins (subunit composition $\alpha\beta\gamma$) dissociate on activation with guanosine triphosphate (GTP) analogs and magnesium to give α -guanine nucleotide complexes and free $\beta\gamma$ subunits. Whether the opening of potassium channels by the recently described G_k in isolated membrane patches from mammalian atrial myocytes was mediated by the α_k subunit or $\beta\gamma$ dimer was tested. The α_k subunit was found to be active, while the $\beta\gamma$ dimer was inactive in stimulating potassium channel activity. Thus, G_k resembles G_s , the stimulatory regulatory component of adenylyl cyclase, and transducin, the regulatory component of the visual system, in that it regulates its effector function—the activity of the ligand-gated potassium channel—through its guanine nucleotide binding subunit. ECENT WORK (1, 2) DEMONSTRATed that a heterotrimeric pertussis toxin (PTX)-sensitive guanine nucleotide binding (G) protein, purified from human red blood cells (hRBC) and treated with guanosine (γ-thio)triphosphate (GTPγS) and magnesium, causes opening of a subset of potassium channels present in isolated membrane patches of atrial cells from adult guinea pig hearts and pituitary GH₃ tumor cells. The properties of these channels are similar to those activated in these cells by receptor ligands such as acetylcholine (ACh), acting through muscarinic receptors (mAChR), and somatostatin, acting through its separate specific receptors. The channels are also opened by GTP_γS and Mg²⁺, which presumably act by stimulating a G protein endogenous to the cardiac membrane patch. Based on its activity, we called this G protein G_k (3). The response to receptor ligands is guanosine triphosphate (GTP)—dependent and abolished by PTX, and, after PTX treatment, is restored by addition of untreated G_k from hRBC in the presence of GTP. Thus, ligand-induced opening of K^+ channels in isolated membrane patches is controlled in a manner analogous to hormonal stimulation of adenylyl cyclases; G_k activation is GTP-dependent and stimulated by occupied receptors, and K^+ channels are the effectors "sensing" the activity state of G_k . In our experiments (1, 2), opening of K^+ channels was specific for the PTX-sensitive G protein of hRBC and occurred at picomolar concentrations. G_s at nanomolar concentrations was unable to substitute for G_k either in coupling receptors to the K^+ channel in the presence of GTP or, after treatment with GTP γ S and Mg²⁺, in directly causing K^+ channel opening. It is commonly thought that activation of G proteins involves tight binding of the guanine nucleotide (a Mg²⁺-dependent step) and dissociation of the heterotrimer into an activated α-G nucleotide complex plus free βy . The purified α_s -GTP γS complex is sufficient for stimulation of adenylyl cyclase (4). For inhibition of adenylyl cyclase, the situation is more complex because, even though resolved α_i -GTP γ S complexes purified from liver were shown to inhibit enzyme activity by Katada et al. (5), By dimers also inhibited adenylyl cyclase and did so at lower concentrations. Although they did not discount a role for α_i , these authors proposed that By dimers may account for a major proportion of Gi-mediated inhibition of adenylyl cyclase (5). Human erythrocyte G_k, with which we stimulated K⁺ channels and reconstituted receptors coupling to K^+ channels after treatment with PTX, is also formed of $\alpha\beta\gamma$ subunits and dissociates into α -GTP γ S plus $\beta\gamma$ under the conditions used for activation and testing of its activity (6). Because GTP γ S-treated G_s , a mixture of α_s -GTP γ S plus $\beta\gamma$ subunits that are biochemically indistinguishable from those present in the human erythrocyte G_k (7), did not stimulate K^+ channels, it seemed that the α subunit and not the $\beta\gamma$ dimer was responsible for the effect of G_k and K^+ channels. Unexpectedly, however, Logothetis *et al.* (8) reported opening of atrial K^+ channels in isolated membrane patches from embryonic chick atria to be caused by $\beta\gamma$ complexes and not by α subunits purified from bovine brain (9, 10). The bovine brain $\beta\gamma$ preparations had previously been shown by two-dimensional tryptic peptide mapping to be indistinguishable from human erythrocyte $\beta\gamma$ dimers (7). In light of these conflicting results, we reexamined the validity of our inferred conclusion that α_k , rather than $\beta\gamma$ from G_k , caused the K^+ channel opening we had observed. We prepared $\beta\gamma$ complexes, resolved as well as possible from PTX-sensitive α subunits, and α_k -GTP γ S complexes, resolved as well as possible from $\beta\gamma$ subunits (Fig. 1), and tested their individual effects on guinea pig atrial K^+ channels as described (1). Ion exchange chromatography (11) was used to obtain α_k -GTP γS (α_k^*) from GTP_{\gamma}S-activated human erythrocyte G_k (G_k*). The resulting preparation was analyzed by SDS-polyacrylamide gel electrophoresis followed by densitometry of the gel after staining first with Coomassie blue and then with silver; the standards were increasing amounts of bovine serum albumin ranging from 0.001 to 10 μg per lane. We obtained a solution that contained 36 µg of αk* per milliliter and 0.4 μg of βγ per milliliter, to which we ascribed a nominal concentration of 1 $\mu M \alpha_k^*$ and 0.01 $\mu M \beta \gamma$ (estimation error, $\pm 10\%$). The Coomassie blue-stained polyacrylamide gel onto which 2 μg of the starting hRBC G_k and 0.5 μg of the resulting hRBC α_k^* had been applied is shown in Fig. 1. The method used to prepare α_k* did not yield significant amounts of free $\beta\gamma$ subunits. These were prepared separately from human erythrocytes (Fig. 1) and bovine brain (Fig. 1) with methods that do not involve stabilization with activating J. Codina and D. Grenet, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030. A. Yatani and A. M. Brown, Department of Physiology and Molecular Biophysics, Baylor College of Medicine Houston, TX 77030. L. Birnbaumer, Department of Cell Biology and Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030. ligands such as NaF and AlCl₃ and avoid the use of Mg²⁺ ions (12). In view of the report of Logothetis et al. (8), we first investigated the possible functional effects of By preparations from boine brain, that is, of subunits of the same origin as theirs. The muscarinic K⁺ channels of interest can be unambiguously identified in mammalian atrial cells by their conductance, open time duration, and inward rectification (1, 13). We observed no effect of 2 to 4 nM untreated βγ on the guinea pig atrial muscarinic K+ channels (six experiments). We also observed no effect of 2 to 4 nM untreated βy on channels in patches held with pipettes containing 10 µM carbachol and incubated with PTX and nicotinamide adenine dinucleotide (NAD+) until the coupling activity of the endogenous Gk had been eliminated (four experiments). However, significant K+ channel opening was consistently obtained on addition of 100 to 200 pM of the bovine brain $\beta \gamma$ preparation after treating it with GTP_γS and Mg²⁺, followed by dialysis, in the same way as G_k was treated to prepare G_k^* (four experiments). This " $\beta \gamma^*$ " preparation at 100 to 200 pM produced far less frequent openings than 50 to 100 pM G_k*, suggesting that the effect might be due to contaminating Gk. Indeed, even though analysis by SDS-polyacrylamide gel electrophoresis fol-'owed by Coomassie blue staining had shown the bovine brain by to be "pure" (Fig. 1), analysis for contaminating G_k by adenosine diphosphate (ADP)-ribosylation with PTX and [32P]NAD+ readily revealed presence of approximately 3% Gk in our preparation of bovine brain βy (Fig. 2A). A similar test for the presence of a PTXsensitive holo-G protein in preparations of human erythrocyte βy was negative (Fig. 2B). We next tested resolved α_k^* and resolved By from human erythrocytes for their capability to stimulate K⁺ channels. In contrast to the report of Logothetis et al. (8), GTP γ S-complexed α subunits of the PTX-sensitive G protein—actual molar ratio of α to βy of about 100:1—were very potent stimulators of K⁺ channel activity. Previous experiments had shown K+ channel opening to appear on addition of 0.2 to 1 pM GTP γ S-treated holo- G_k (G_k^*) (1). In our present studies (Fig. 3A) (representative of 20 similar experiments), α_k* was equipotent on a molar basis with that of the starting G_k*. We observed K⁺ channel opening in three out of seven trials after addition of 0.5 pM α_k -GTP γ S (threshold concentration). Frequent openings, occuring in bursts and clusters of bursts (14), were obtained in 14 out of 14 trials on addition of 5 pM α_k *. On addition of 50 $pM \alpha_k^*$ even more frequent openings were obtained, including simultaneous openings of more than one of the channels in the patch. In all instances, α_k^* was tested on membrane patches that in their inside-out configuration had shown no opening for at least 5 minutes. The unitary openings induced by α_k^* and G_k^* were the same within the error of the measurements. At -80 mV, the unitary currents had amplitudes of 2.18 ± 0.19 pA (mean \pm SD from four separate experiments) when induced by α_k^* and 2.13 ± 0.11 pA (n=6) when induced by G_k^* . Similarly, the mean open times of channels stimulated by α_k^* (1.23 ± 0.24 msec; n=4) did not differ significantly from those of channels stimulated by G_k^* (1.15 ± 0.25 msec; n=6). We concluded Human erythrocyte brain O \rightarrow 94 \rightarrow 67 \rightarrow 43 \rightarrow α_{40} β_{35} 20 \rightarrow α_{k} α_{k}^{*} α that preparations of G_k^* and α_k^* caused opening of the same K^+ channels. Further emphasis on the specificity of the α subunits came from the findings that $\beta\gamma$ preparations from human erythrocytes (Figs. 1 and 3B) were inactive at 2 to 4 nM in stimulating K^+ channels. This was regardless of whether the $\beta\gamma$ preparations had been incubated with GTP γ S under G_k activating conditions (Fig. 3B, representative of five such experiments; Fig. 3C, representative of four such experiments). In these experiments, we noticed that prior exposure of patches to high concentrations (2 to 4 nM) of $\beta\gamma$ often delayed the stimulation of K⁺ channels by G_k^* or α_k^* . K⁺ channel opening in such patches never occurred within the first 2 minutes after Fig. 1. SDS-polyacrylamide gel electrophoresis (10% acrylamide) of preparations used in our studies: G_K (2 µg holo-G protein), α_k - $GTP\gamma S$ (α_k^*) (0.5 µg protein), $\beta \gamma$ dimers (1.0 µg of protein) from human erythrocytes, and βγ dimers (2 µg of protein) from bovine brain. Bovine brain membranes were prepared according to Neer et al. (9). G_k and $\beta \gamma$ dimers were prepared from erythrocyte and bovine brain membranes according to Codina et al. (12), and stored at -70° C in 0.1% Lubrol-PX, I mM EDTA, 20 mM βmercaptoethanol, 150 mM NaCl, 10 mM sodium Hepes, pH 8.0, and 30% (by volume) ethylene glycol (buffer A) at 100 to 200 µg/ml. α_k * was prepared as follows: 750 µl of G_k (106 µg/ml) in buffer A with 5% Lubrol-PX, 200 μM GTPγS, and 100 mM MgCl₂ were incubated for 60 minutes at 32°C, diluted 13-fold with 1 mM dithiothreitol (DTT), 1 mM EDTA, 10 mM tris-HCl, pH 8.0, and 0.6% Lubrol-PX (buffer B). This solution was applied to a column of DEAE-Fractogel TSK 650M (Pierce) of 0.1-ml bed volume equilibrated with buffer B. The column was washed sequentially with 2 ml of 7 mM MgCl₂, 1 mM DTT, 1 mM EDTA, and 10 mM tris-HCl, pH 8.0, (buffer C) and 1.0 ml of buffer C plus 60 mM NaCl. α_k * was eluted with a final yield of 22% in two 0.25-ml aliquots of buffer C containing 200 mM NaCl. These fractions were dialyzed for 12 hours with three changes of 650 ml of buffer C with 20 mM KCl. The figure is a composite of three Coomassie blue–stained gels; G_k and α_k *—also called " G_i " and " α_i *" (1, 3)—were electrophoresed on the same gel. γ subunits, which migrate with the dye front, are not visible because of their poor staining properties (7). Fig. 2. Analysis of presence of PTX substrate in (A) bovine brain and (B) human erythrocyte $\beta \gamma$ preparations used in our studies. Photographs of the autoradiographs (A) and of the stained gels (CB) of the regions where α and β subunits migrate are shown; y subunits migrated with the dye front and are not shown. [32P]ADP-ribosylation of increasing quantities of Gk, used as standards, and the indicated amounts of the bovine brain $\beta\gamma$ preparation shown in Fig. 1. [32P]-ADPribosylation of 5000 fmol each of G_k (400 ng) and human erythrocyte $\beta\gamma$ (200 ng). Dialyzed PTX (12) was incubated at 300 μ g/ml with 20 mM DTT for 20 minutes at 32°C, diluted fivefold with 0.4% bovine serum albumin to give activated PTX. Fractions (10 µl) to be covalently modified with adenosine diphosphoribose (ADP-ribose) were incubated in a final volume of 60 µl containing 10 µl activated PTX, 1 mM adenosine triphosphate, 100 µM GTP, 1 mM EDTA, 10 mM tris-HCl, pH 7.6, 0.25% Lubrol-PX, and 10 μΜ [32P]NAD+. Proteins in the reaction mix- tures were precipitated with acetone, washed with 15% ice cold trichloroacetic acid and ether, and electrophoresed on 10% SDS-polyacrylamide gels (12). The gel slabs were stained with Coomassie blue, photographed, dried under vacuum, and autoradiographed for 16 hours. **Fig. 3.** Effects of (**A**) human erythrocyte α_k^* and resolved (**B** and **C**) human erythrocyte β_Y subunits in Figs. 1 and 2 on K⁺ channel activity in excised inside-out membrane patches of adult guinea pig atrial cells. Atrial myocytes were prepared by enzymatic dispersion (17) and K⁺ currents were recorded by patch-clamp techniques (18) in the cell-attached (CA) and excised inside-out (IO) modes with symmetrical isotonic K^+ (140 mM) solutions as described in Yatani et al. (1). The holding potential was -80 mV; pipette solutions were 140 mM KCl, 1 mM EGTA, 1 mM MgCl₂, 5 mM Hepes (pH adjusted to 7.3 with tris base); bathing solutions had the same composition plus 2 mM ATP [to inhibit ATPsensitive K+ currents (19)] and 100 µM adenosine 3',5'-monophosphate (to avoid secondary effects due to possible inhibition of adenylyl cyclase) without GTP (A and C) or with 100 µM GTP added with $\beta \hat{\gamma}$ (B). Dilution of proteins: α_k^* subunits were diluted in pipette solution; $\beta \gamma$ subunits were diluted with buffer A (Fig. 1) to 80 to 160 μ g/ml (2 to 4 μ M) and, immediately prior to addition to the experimental chamber, another 100-fold in ice-cold pipette buffer containing 0.1% bovine serum albumin; $\beta \gamma^*$ was prepared by incubation of $\beta \gamma$ at 200 to 400 µg/ml in buffer A with 0.1% Lubrol-PX, 100 μM GTP γS and 50 m M MgCl₂ at 32°C for 30 minutes, followed by dialysis as above for α_k * and dilution according to the scheme used for dilution of untreated By. Additions of proteins were made as 10-µl aliquots to a 100-µl experimental chamber placed on the stage of an inverted microscope. After addition, the chamber solution was rapidly mixed with a 20-µl Pipetteman. Times at top of each trace are in minutes (') or seconds (") elapsed between the preceding addition and the recording of the trace shown. The first additions were made between 7 and 10 minutes after excision of the patch, and further additions were made at 25- to 30-minute intervals. Calibration bars refer to all records. Other conditions were as in Yatani et al. (1, 2). addition of G_k^* or α_k^* (n = 15) and in several instances (n = 4) took 20 or more minutes to appear. This was not due to the buffer added with the $\beta\gamma$ subunits and was observed with $\beta\gamma$ (untreated, GTP present) from both bovine brain and human erythrocytes. This suggested that By subunits may have an inhibitory activity. We tested for a potential inhibitory activity of the human erythrocyte βy by adding it to membrane patches held by pipettes containing 10 µM carbachol and in bathing media with 100 µM GTP, that is, to patches with ligandstimulated K+ channels. In two out of five trials, we observed a decrease in K+ channel activity, which was overcome on addition of α_k^* or G_k^* . These experiments suggest that free βy subunits may play an inhibitory role. similar to that by which βγ subunits may lower adenylyl cyclase activity (5). However, it is cautioned that we have only used very high concentrations (three to four orders of magnitude higher than those at which α_k^* is able to stimulate K^+ channels) and have not carried out sufficient experiments to ascribe any physiological role to these observations. Our experiments demonstrate that of the two complexes that form when G_k is treated with GTPγS in the presence of Mg²⁺ to give G_k^* , it is the α_k -GTP γ S and not the $\beta\gamma$ that cause opening of K⁺ channels in guinea pig atrial myocytes. Recently Hescheler et al. (15) have shown that the α subunit of porcine brain G_0 and not the $\beta \gamma$ dimer mediates the inhibitory effects of opioid receptors on neuronal Ca²⁺ channels. There are many reasons why Logothetis et al. (8) may not have found effects with brain α subunits but obtained K+ channel opening with 23 nM brain $\beta \gamma$. These reasons, which are presented elsewhere (16), include the possibility that α_k was not among the α subunits tested, that the subunits tested may have had contaminants of one kind or another, or that the \beta \gamma preparations used were contaminated with activated Gk proteins. In addition, even if the effect reported by Logothetis et al. is due to $\beta\gamma$, although it is interesting, it would probably not relate to the mode of action of muscarinic receptors due to the high concentrations needed. More recently, Logothetis et al. showed their $\beta \gamma$ preparation to be active at 200 pM and measured a response, which they indicated was quantitatively equivalent to ours at 200 pM G_k^* (16). However, the response to bovine brain $\beta \gamma$ shown (16) was at most 10% of that attainable in the same patch under the cell-attached configuration. In contrast, addition of 200 pM α_k^* to the same membrane patch that is shown in F₁, 3A resulted in no further increase in activity than that seen with 50 pM. This indicates that our system may saturate at 50 pM. Thus, if patches were comparable, a 0.5% contamination of bovine brain By with activated G_k could still account for the results of Logothetis et al. (8, 16). Further, even if both α_k^* and $\beta \gamma$ are able to stimulate K^+ channels, α_k^* does so at concentrations at least 100 times lower than $\beta \gamma$. Because α and By subunits are formed in equimolar amounts, the results indicate that the mechanism of action of G_k is similar to that of G_s and transducin in that its effector function is regulated through the α subunit. ## REFERENCES AND NOTES - 1. A. Yatani, J. Codina, A. M. Brown, L. Birnbaumer, Science 235, 207 (1987). A. Yatani, J. Codina, R. D. Sekura, L. Birnbaumer, - A. M. Brown, Mol. Endocrinol., in press. When originally purified, the human erythrocyte PTX-sensitive G protein was called "putative G. PTX-sensitive G protein was called "putative G_i (N_i)," later simplified to G_i (or N_i) (12). However, the identity between Gi activity in cells, which mediates hormonal inhibition of adenylyl cyclase, and this purified G protein was never established. Because the purified protein was recently found to be a potent activator of ligand-gated K⁺ channels, we have renamed the human erythrocyte PI sensitive G protein G_k and its α subunit α_k , but al refer to it as " G_i " or " α_i ," the quotes indicating our uncertainty as to its G_i or α_i activity. Abbreviations: G, guanne nucleotide binding signal transducing protein of composition $\alpha\beta\gamma$, which is a stimulatory or inhibitory component of an effector system; G_s , stimulatory regulatory component of adenylyl cyclase; G_i, inhibitory regulatory component of adenylyl cyclase; G_k, stimulatory regulatory component of receptor-gated K+ channels; α_s, α subunit of G_s; α_i , α subunit of G_i ; α_k , α subunit of G_k ; * denotes treatment of the protein or its subunit with GTP γ S and Mg²⁺ under conditions that lead to dissociation of a G protein into an activated (*) α -GTP γ S - of a G protein into an activated (*) α-G1PγS complex and a βγ dimer. J. K. Northup, M. D. Smigel, P. C. Sternweis, A. G. Gilman, J. Biol. Chem. 258, 11369 (1983). T. Katada, J. K. Northup, G. M. Bokoch, M. Ui, A. G. Gilman, ibid. 259, 3578 (1984); T. Katada, G. M. Bokoch, M. D. Smigel, M. Ui, A. G. Gilman, ibid. 2596 ibid., p. 3586. - J. Codina, J. D. Hildebrandt, L. Birnbaumer, R. D. Sekura, *ibid.*, p. 11408. J. D. Hildebrandt *et al.*, *ibid.* 260, 14867 (1985). - J. D. Filideorandt et al., 10ta. 200, 14867 (1985). D. E. Logothetis, Y. Kurachi, J. Galper, E. J. Neer, D. E. Clapham, Nature (London) 325, 321 (1987). E. J. Neer, M. J. Lok, L. G. Wolf, J. Biol. Chem. 259, 14222 (1984). - P. C. Sternweis and J. D. Robishaw, *ibid.*, p. 13806. T. Katada, M. Oinuma, M. Ui, *ibid.* 261, 8182 - J. Codina et al., Proc. Natl. Acad. Sci. U.S.A. 80, 4276 (1983); J. Codina et al., J. Biol. Chem. 259, 5871 (1984); J. Codina et al., J. Receptor Res. 4, 411 - 13. B. Sakmann, A. Noma, W. Trautwein, Nature (London) 303, 250 (1983). - 14. D. Colquhuon and A. G. Hawkes, Philos. Trans. R. Soc. Lond. B 300, 1 (1982). 15. J. Hescheler, W. Rosenthal, W. Traurwein, G. - Schultz, Nature (London) 325, 445 (1987). - 16. L. Birnbaumer and A. M. Brown, ibid., in press; I E. Logothetis, Y. Kurachi, J. Galper, E. J. Neer, D. E. Clapham, *ibid.*, in press. 17. A. M. Brown, D. Kunze, A. Yatani, *ibid.* 311, 570 - O. P. Hamill, A. Marty, E. Neher, B. Sakmann, F. J. Sigworth, Pfluegers Arch. 391, 85 (1981); H. D. Lux and A. M. Brown, J. Gen. Physiol. 83, 727 (1984); D. L. Wilson and A. M. Brown, IEEE Trans. Physiol. 83, 727 (1984); D. L. Wilson and A. M. Brown, IEEE Trans. Biomed. Eng. 32, 786 (1985). - A. Noma, Nature (London) 305, 147 (1983). Supported in part by NIH grants DK-19318, HD-09581, HL-31154, DK-27685 (L.B.), and HL-36930 and HL-37044 (A.M.B.) and by American Heart Association grant 851159 (A.Y.). - 24 February 1987; accepted 23 March 1987 24 APRIL 1987 REPORTS 445